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Abstract
In this internship, we integrate the randomization technique based on Random Butterfly Transforma-
tions (RBT) into the Algebraic Recursive Multilevel Solver (ARMS) to improve the preconditioning
phase in the iterative solution of sparse linear systems. After obtaining satisfying experimental
results in a sequential implementation using Matlab, we integrated the RBT technique into the
parallel version of ARMS (pARMS). By analyzing experimental results we conclude that integrating
RBT into pARMS enables us to obtain more accurate results and to reduce the number of iterations
required for convergence.

Keywords

Linear systems, Krylov subspace methods, sparse linear algebra, randomization, preconditioning,
Random Butterfly Transformation, ARMS, pARMS.
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1
Introduction

With the evolution of recent computer architectures, the growing gap between communication
and computation efficiency makes communication very expensive (at a cost of one communication
we can generally perform thousands of arithmetical operations). This requires the rethinking of
most of numerical libraries in order to take advantage of current parallel architectures which are
commonly based on multicore processors [8], possibly with accelerators [2] like Graphics Processing
Units (GPU) or Intel Xeon Phi.

In this work we are concerned with the solution of linear systems Ax = b where A is an n× n
real matrix (dense or sparse), b is a real n-vector and x is the n-vector of unknowns. This operation
is at the heart of many applications in high-performance computing (HPC) and is usually solved
using either direct or iterative methods.

Direct methods [10] usually solve a linear system of equations Ax = b using factorization
techniques depending on the properties of the original matrix A. For a general system, we compute
an LU factorization of A that decomposes the input matrix A into the product A = L×U , where L
is a lower triangular matrix and U is an upper triangular matrix. When A is positive definite, then
we decompose matrix A into the product A = L× LT (Cholesky decomposition, which requires
half the number of flops of the LU factorization). In both cases (LU or Cholesky), the solution is
then obtained by solving successively 2 triangular systems.

Another possibility to solve Ax = b is to use an iterative method [22] to compute an approximate
solution. These methods involve passing from one iteration to the next one by modifying one or a
few components of an approximate vector solution at a time. Classical examples of iterative methods
are the Jacobi, Gauss-Seidel, Successive Over-Relaxation (SOR), and Gradient Methods [13].

When solving square linear systems Ax = b using Gaussian elimination (e.g., in LU factorization),
we commonly use partial pivoting to avoid having zero or too-small numbers on the diagonal. This
technique is implemented in current linear algebra libraries and ensures stability [16]. However,
partial pivoting requires communication (search a pivot, swapping of rows). For example, on a
hybrid CPU/GPU system, the LU algorithm in the MAGMA library [6] spends over 20% of the
factorization time in pivoting even for a large random matrix of size 10, 000 × 10, 000 [26].

As an alternative to pivoting, an approach based on randomization called Random Buttefly
Transformation (RBT) [21] was revisited during the recent years. Following the RBT method, A is
transformed into a matrix that would be sufficiently random (with a probability close to 1) to avoid
the need of pivoting. RBT is a random transformation of A which can avoid pivoting and then
can reduce the amount of communication. We can obtain satisfying accuracy with an additional
computational cost, which is negligible compared to the cost of factorization. This method has
been successfully applied to dense linear systems for either general [5] or symmetric indefinite [3]
systems, in the context of direct methods based on matrix factorization.

The Algebraic Recursive Multilevel Solver (ARMS) is one of the solvers which applies the
iterative Krylov subspace methods in sparse linear systems, it relies on multilevel partial elimination.
The preconditioning seperates the entries into two parts, the first part called fine set which is
composed of block independent set, and the second part called coarse set which contains the rest of
the entries. The coarse set can be used to build the Schur complement, which allows us to perform
a block LU factorization. The interlevel LU factorization can be built from the upper level LU
factorization and the fine set, up to the first level.

Parallel ARMS (pARMS) is a distributed-memory implementation of ARMS, which relies on
distributed group independent sets. It provides a set of standard preconditioners such as Restrictive
Additive Schwarz, Schur complement and Block Jacobi, which allows us to run performance tests.
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CHAPTER 1. INTRODUCTION 2

In this work we want to study the possibility of using RBT in iterative linear system solvers
based on Krylov subspace methods, which are widely used in physical and industrial applications.

We now briefly introduce the contents of each chapter in this report. Chapter 2 presents the
preconditioned Krylov subspace method (PKSM), which helps us to learn the iterative methods
for solving sparse linear systems. Chapter 3 describes the randomization technique RBT, which
will be integrated into the Algebraic Recursive Multilevel Solver (ARMS) and its parallel version
pARMS. Chapter 4 describes the process of integrating RBT into ARMS, and the experimental
results. Chapter 5 describes the process of integrating RBT into pARMS, and the experimental
results. Chapter 6 presents the conclusions obtained after this internship.
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2
Preconditioned Krylov Subspace Method

2.1 Preconditioning

In general, a preconditioner is any kind of implicit or explicit modification of an original linear
system which makes it “easier” to solve by a given iterative method. In terms of preconditioned
Krylov subspace method, preconditioned means we use explicit modification of orginal linear system
as form :

Ax = b WTAV y = WT r0, where r0 = b−Ax0 (2.1)

and let Krylov subspace method to solve the linear system.

2.2 Krylov Subspace Method

Two kinds of iterative methods exist, the first one is Algebraic MultiGrid (AMG) Method, and
the other one is Krylov subspace method. AMG methods have been proposed to solve general
problems, but their success is limited to solving Partial Differential Equations (PDE) problems [24].
Krylov subspace methods, using incomplete LU preconditioners, are considered general method
to solve arbitrary sparse linear system. In this internship, we focus on Krylov subspace method.
Krylov subspace mathod is named after the russian mathematician and engineer Alexei Krylov, who
published this method in 1931. The fundamental theorem for this paper is the Cayley-Hamilton
theorem, which states that the inverse of a matrix can be found in a linear combination of its
powers.

Krylov subspace iterative method is based on projection processes, which are orthogonal and
oblique onto Krylov subspaces, and which are spanned by the vectors of the form p(A)υ, where p
is polynomial. This technique approximates the solution A−1b by qm−1(A)b, in which qm−1 is a
polynomial of degree m− 1. Let V = [υ1, ..., υm] an n×m matrix, whose column-vectors consist
a basis of K. W = [ω1, ...ωm], an n ×m matrix whose column vectors consist a basis of L. An
approximative solution is given by : x = x0 + V y [22]. Orthogonal condition produces a new
system of equations to vector y, WTAV y = WT r0. Assuming WTAV is nonsingular, the following
algorithm can approximate the solution x̃.

3



CHAPTER 2. PRECONDITIONED KRYLOV SUBSPACE METHOD 4

2.3 Algorithm

Algorithm 1 Krylov Subspace Algorithm [22]
Compute r0 = b−Ax0, β := ‖r0‖2, and υ1 := r0

β

Define the (m+ 1)×m Hessenberg matrix H̄m = {hij}1≤i≤m+1,1≤j≤m.SetH̄m = 0.
for j = 1, 2, ..., m do

Compute ωj := Aυj
for i = 1, 2, ..., j do

hij := (ωj , υi)
ωj := ωj − hijυi

end for
hj+1,j = ‖ωj‖2
if hj+1,j = 0 then set m := j and goto last line,
else υj+1 =

ωj

hj+1,j
,

end if
end for
Compute ym, the minimizer of ‖βe1 − H̄my‖2, and xm = x0 + Vmym
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3
Random Butterfly Transformation

3.1 Context

In the linear systems, to solve Ax = b, we compute the factorization A = L× U , with L unit-lower
triangular and U upper triangular. Then we solve two linear systems of type Ly = b, Ux = y,
which is much faster than to solve directly the system Ax = b. However, this factorization has
difficulties in the triangular matrix L and U , since it is forbidden to have small numbers or zeros
on the diagonal, as we use these numbers in divisions. In this case, we avoid this problem by
swapping rows or columns (called pivoting). Unfortunately, the operation of pivoting is expensive
in communication, for this reason, we use randomization instead of pivoting. In this way we save
communication time, which can be use to perform thousands of computations [15].

3.2 Randomization

A butterfly matix is an n× n matrix of the form :

B =
1√
2

(
R0 R1

R0 −R1

)
(3.1)

where n ≥ 2 and R0 and R1 are random diagonal and nonsingular n/2× n/2 matrices.
A recursive butterfly n× n matrix of depth d is a product of the form [5]:

W<n,d> =


B
<n/2d−1>
1 · · · 0

...
. . .

...
0 · · · B

n/2d−1

2d−1

× · · · ×

B
<n/4>
1 0 0 0

0 B
<n/4>
2 0 0

0 0 B
<n/4>
3

0 0 0 B
<n/4>
4


×

(
B
<n/2>
1 0

0 B
<n/2>
2

)
×Bn1 , (3.2)

where B<n/2
k−1>

i are butterflies of size n/2k−1 × n/2k−1, k = 2, ..., d and B<n> is butterfly of size
n× n.

A Random Butterfly Transformation (RBT) of depth d of a n × n matrix A is the product
of Ar = UTAV . It consists of a multiplicative preconditioning UTAV where the matrices U and
V are selected from a particular class of recursive butterfly matrices. Then we use Gaussian
Elimination with No Pivoting (GENP) [4] on the matrix UTAV and instead of solving Ax = b, we
solve (UTAV )y = UT b followed by x = V y.

5



CHAPTER 3. RANDOM BUTTERFLY TRANSFORMATION 6

3.3 Algorithm

Algorithm 2 Random Butterfly Transformation Algorithm [5]
Transform the original matrix to a dense matrix whose size is power of 2
Generate recursive butterfly matrices U and V
Performe randomization to update the matrix A and obtain the matrix Ar = UTAV
Factorize the randomized matrix with GENP
Compute UT b to solve Ary = UT b, then solve x = V y
Cut down the vector whose size is a power 2 to its original size
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4
Integration of RBT in the Algebraic
Recursive Multilevel Solver (ARMS)

4.1 Sequential implementation of ARMS

Implementation of Preconditioned Krylov Subspace Methods (PKSM)

1. A Preconditioned Krylov Subspace Method (PKSM) is used to solve the linear system Ax = b,
which consists of a preconditioner and an accelerator [23]. In the following equation system, M is a
preconditioning matrix, then the right-preconditioned system is

AM−1y = b, where x = M−1y, (4.1)

is solved instead of the original system Ax = b. Furthermore, the accelerator is an iterative method,
which applies Krylov subspace methods. To compute the residual r0 = b−Ax0 [1], we should assign
an approximate value to the initial x0, then compute the right-preconditioned Krylov subspace
method. This algorithm gives an approximate solution from the affine space :

xm = x0 + Span{r0, AM−1r0, ..., (AM−1)m−1r0} [7], (4.2)

which statisfies certain conditions. For instance, the FGMRES algorithm requires that the residual
rm = b−Axm has a minimal 2-norm.

The preconditioning matrix M is obtained from an incomplete LU factorization, which is an
approximate Gaussian Elimination (GE) [12] process. When we apply GE to a sparse matrix A, it
produces nonzero entries at the place of orginal zero elements. Fortunately, these fill-in entries are
usually small and could be dropped, according to the different “dropping strategy”. During the
elimination process, if this “dropping strategy” relies on levels, then the preconditioner is called
a level-of-fill ILU. For instance, ILU(0) is obtained by performing the LU factorization of A and
dropping all fill-in elements generated during the process. Conversely, if the fill-ins are dropped
according to their numerical values, then the preconditioner is ILU factorization with the threshold
(ILUT) of dropping relatively small entries.

Multilevel ILU factorization

In general, we use a method named block incomplete LU factorization (ILU-factorization) to
precondition a linear system, which consists of an approximate GE process based on separating the
original unkowns into a “coarse” and a “fine” set. The idea of independent or “group independent”
sets is exploited to define this seperation. Block independent set orderings permute the original
linear system Ax = b into the form : (

B F

E C

)(
x

y

)
=

(
f

g

)
, (4.3)

in which the submatrix B represents independent set reorderings, which generates a diagonal matrix
B [17]. Thus, it is convenient to eliminate the x variable to obtain a system with only y variable.
The coefficient matrix for this “reduced system” is the Schur complement S = C − EB−1F [9].
Recursion can now be exploited, such that dropping is supplied to S to limit the fill-ins followed by
the reordering of the resulting reduced system into the form 4.3 by independent sets. This process
is repeated for several levels until the system is small enough or until a maximum number of levels

7



CHAPTER 4. INTEGRATION OF RBT IN THE ALGEBRAIC RECURSIVE MULTILEVEL
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is reached. Then the system is solved by a direct sparse solver or an ILUT-GMRES combination.
This procedure is called Algebraic Recursive Multilevel Solver (ARMS).

Using ILUs in PKSMs may cause poor scalability. For instace, the ILUT construction phase is
largely a sequential process, and parallel variants of ILUT are not effective in terms of convergence.
The preconditioned iteration phase itself scales poorly with the problem size. New computer
architectures also challenge PKSM implementations to adapt to larger processor counts, nonuniform
memory, and novel communication paradigms. Remarkably, sparse direct methods have had a
better history of adaptation to new computing environments. The main reason for this is that
direct methods have integrated blocking techniques to exploit the dense parts of elimination and
memory hierarchies in the computing platforms. In contrast, developers of PKSMs tend to keep
fill-ins at bay as much as possible to gain in speed and memory usage, so end up with no or little
dense computation phases. This strategy has a disadvantage when exploiting new accelerator
architectures, such as general-purpose GPUs. So far, it has been exceedingly difficult to obtain
good speeds for sparse iterative methods on GPUs. While some dense computations can extract a
good portion of 60%, of the peak rate on an NVIDIA Telsa board for example, only 3% of the peak
rate can be achieved for something as mundane as a matrix-vector product (sparse matrix, dense
vector).

4.2 Integration of RBT into ARMS

Now we are familiar with Algebraic Recursive Multilevel Solver (ARMS) and Random Butterfly
Transformation (RBT), the next step is to integrate our RBT technique into the ARMS solver. Our
goal is to find the last level of preconditioning and then replace the original ILUT factorization
by our RBT preprocessing. Note that RBT usually concerns dense linear systems, while ARMS
addresses sparse linear systems. So we have to convert the last schur complement which is a
sparse matrix into a dense format, and after that we can use RBT. After randomize the last schur
complement A with recursive butterfly matrices U and V , then we reconvert the dense matrix
back into a sparse format to do the following computations. Moreover, RBT requires the size of
the matrix to be a power of 2, which can be always obtained by “augmenting” the matrix A with
additional 1’s on the diagonal.
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Figure 4.1: Integration of RBT in ARMS

4.3 Comparison of solving time

In this experiment the parameters are as follows : the block size in ARMS reduction is 200; the
number of levels in ARMS is 4; the maximum number of outer steps is 1000.

We compare the performance of ARMS with and without applying RBT. The test matrices arise
from a 3-D convection/diffusion problem with the convection coefficients of 0.1 in all 3 directions,
and with the Dirichlet Boundary conditions. The problem was discretized using a 7-point centered
finite-difference scheme on a nx×ny×nz grid, excluding boundary points, where nx = ny = 15 and
nz is taken as 10, 20, or 30 to get the problems of varying total size 2250, 4500, or 6750 grid points,
respectively. Table 4.1 contains the timing results for the construction of ARMS preconditioner
(rows arms and armsprec) without and with RBT, respectively; and for the application of ARMS,
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we observe (see bold-faced numbers in Table 4.1) an improvement in time of about 7.8%, 8.8%, or
2.8% respectively, when using RBT.

Table 4.1: Timing results for the test problems (seconds)

Algo Size = 2250 Size = 4500 Size = 6750
arms 14.82 22.87 25.08

arms_rbt 13.75 21.02 24.39
armsprec 0.091 1.388 4.462

armsprec_rbt 0.082 1.185 3.196

Now, let us visualize the data in the following graph.
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Figure 4.2: Timing results for arms and arms_rbt

4.4 Comparison of iterations required for convergence

In this experiment the parameters are as follows : the block size in ARMS reduction is 200; the
number of levels in ARMS is 4; the maximum number of outer steps is 1000.

Table 4.2 shows the number of iterations (column #it) needed to reach an approximate solution
with relative tolerance of 10−10, and the corresponding (column fill-factor). The fill-factor is
defined as the ratio of total ARMS preconditioner to fill-in to the number of nonzeros in the original
matrix. We observe (see bold-faced numbers in Table 4.2) that the number of iterations required
when ARMS with RBT is used is smaller than that for the ARMS without RBT. Hence, RBT may
accelerate the convergence of ARMS.

Table 4.2: Convergence and fill-factor tests of different preconditioners

Size = 2250 Size = 4500 Size = 6750
Type #it fill-factor #it fill-factor #it fill-factor
ILUT 38 2.53 194 2.62 635 2.65
arms 26 2.82 70 2.95 272 3.36

arms_rbt 26 3.48 67 2.96 200 2.53
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Now, let us visualize the data in the following graph.
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5
Integration of RBT in the parallel Algebraic

Recursive Multilevel Solver (pARMS)
The Figure 5.1 presents the fundamental process of pARMS [19]. At first, we have an initial matrix
A, which is distributed among the processors, using domain decomposition methods. Then each
processor approximately solves a part of the system independently, using local preconditioners.
Exchange of information for shared data is made by a global preconditioning. This process is
repeated until the solution is sufficiently accurate.

Figure 5.1: The fundamental process of pARMS

5.1 Domain Decomposition method

When considering the parallel implementation, it is important to mention the domain decomposition
method [25]. In pARMS, we use a special domain decomposition algorithm that we discuss now. In
this program, each processor reads the whole matrix, which is assumed to be in Harwell-Boeing
format. Matrix graph is then partitioned using Distributed Site Expansion (DSE), a simple
partitioning routine, and scatters the local matrices to each processor. Once these submatrices
are received, each processor solves the problem using preconditioned FGMRES preconditioned
with : Restrictive Additive Schwarz preconditioner (RAS), Schur complement based preconditioner
(SCHUR) and Block-Jacobi preconditioner (BJ).

Independent sets

To move to a parallel implementation of ARMS, we need to generalize the notion of Group-
Independent Sets [19] to Distributed Group-Independent Sets (DGIS) [19]. DGIS means unkowns of
different groups (with and across processors) are not coupled, which is easily calculated by further

12



CHAPTER 5. INTEGRATION OF RBT IN THE PARALLEL ALGEBRAIC RECURSIVE
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subdividing these sets of interior nodes. The local matrix is represented by three sets : IS - the
points in distributed group-independent sets, I1 - the set of local interface points, and I2 - the set
of interdomain interface points.

Figure 5.2: Distributed Group-Independent Sets

5.2 Global preconditioners in pARMS environment

There are three global preconditioners available in pARMS. The first one is an Restrictive Additive
Schwarz procedure in which the local solver uses a local ARMS preconditioner. The second one
is a Schur complement technique, in which the Schur complement relates to equations associated
with local and inter-processor interface points. The third one applies if the system is very large, in
this case it is necessary to extend the ARMS reordering [18] for the interdomain variables since the
Schur complement system becomes costly.

Now we talk about preconditioning of distributed sparse linear systems. For instance, RAS,
SCHUR, BJ.

RAS preconditioner

1. Update local residual ri = (b−Ax)i
2. Solve Aiδi = ri
3. Update local solution xi = xi + δi.

SCHUR preconditioner

1. Forward: calculate right hand side (rhs) g′i = gi − EiB−1i fi
2. Solve global Schur complement system Sy = g′, with

Siyi +
∑
j∈Ni

Eijyj = gi − EiB−1i fi ≡ g′i, (5.1)

3. Backward : calculate ui with Biui = fi − Eiyi.
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BJ preconditioner

1. Forward: calculate right hand side (rhs) g′i = gi − EiB−1i fi
2. Solve global Schur complement system Sy = g′, with

Siyi +
∑
j∈Ni

Eijyj = gi − EiB−1i fi ≡ g′i, yi + S−1i
∑
j∈Ni

Eijyj = S−1i
[
gi − EiB−1i fi

]
. (5.2)

3. Backward : calculate ui with Biui = fi − Eiyi.

Parallel Schur complement preconditioning

Let us look deep into the framework of parallel Schur complement [14]. The ARMS procedure
disscussed above yields a comprehensive framework that can be exploited to develop other well-
known algorithms. In fact, the only operations required are : 1. the descend and ascend procedure,
2. the generation of the Schur complement. In ARMS, these are defined from incomplete GE. In
Algebraic Multigrid (AMG), they are defined from generic restrictions and prolongation operators.
Much of AMG research is centered around defining good restrictions and prolongations. If the
ARMS software is written in an inclusive manner, it is perfectly possible to have a unique meta-
algorithm which yields as particular cases either AMG or various ARMS techniques. It is important
to have such polymorphism available for conducing research on robust algorithms.

The versatility of the ARMS framework may be clearly seen in its handling of the last-level
Schur complement. In this work, we propose to focus on solving the linear system defined by this
Schur complement Ak, where k is the last level. As we have stated earlier, the matrix Ak may be
very poorly conditioned because the existing ARMS multilevel procedure pushes “bad” nodes to
the end. Currently, ARMS uses dropping to sparsify this system followed by an incomplete LU
solve (with partial pivoting). Possibly convergence-impaired, this procedure, however, enables the
matrix Ak to be relatively large due to its controlled sparsity. In the realm of exsacale computing
power, we propose to keep the last Schur complement as dense (or dense block) for the sake of
both convergence and effcient execution using accelerator technologies, such as GPUs. In addition,
we propose to use the RBT to precondition matrix Ak, to avoid partial pivoting and to achieve
efficient implementations on GPUs and/or MIC architectures.

5.3 Local preconditioners in pARMS environment

In pARMS, we can use three local Incomplete LU preconditioners [20], such as Incomplete LU
factorization level 0 (ILU0), Incomplete LU factorization level k (ILUK), Incomplete LU factorization
with Threshold (ILUT), and one multilevel preconditioner such as Algebraic Recursive Multilevel
Solver (ARMS). During this internship we added our local preconditioner ARMS with RBT, which
we call ARMS_RBT.

ILU0 preconditioner

ILU0 means incomplete LU factorization technique with no fill-in, consisting of taking the zero
pattern P to be precisely the zero pattern of A. Assuming L has the same structure as the lower
part of A, U has the same structure as the upper part of A, if we take the product L × U , the
resulting matrix has the same pattern. In general, it is impossible to match A with product of
L × U , because product of L × U has extra diagonals, named diagonal with offsets nx − 1 and
−nx + 1. The entries in these extra diagonals are called fill-in elements. If these fill-in elements are
ignored, then it is possible to find L and U , which leads to A equal to product of L × U in the
other diagonals.
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ILUK preconditioner

To define ILU(k) with the same example as before, the ILU(1) factorization results from taking P
to be the zero pattern of the product L× U of factors L, U obtained from ILU(0). In other words,
the fill-in positions created in this product belong to the augmented pattern NZ1(A), but their
actual values are zero. So with this regulation we could obtain ILU(k) factorization.

ILUT preconditioner

The generic ILU algorithm with threshold can be obtained from the IKJ version of Gaussian
elimination by including a set of rules for dropping small elements. Applying a dropping rule to an
element means replacing the element by zero if it satisfies a set of criteria. A dropping rule can be
applied to a whole row by applying the same rule to all the elements of the row.

ARMS preconditioner

ARMS-solve(Al, bl) – Recursive Multi-Level Solution [19]
1. Solve Ll f ′l = fl
2. Descend, i.e., compute h′l := hl − ElU−1l f ′l
3. If l = last_lev then
4. Solve Al+1zl = h′l using ILUT factors
5. Else
6. Call ARMS-solve(Al+1, h

′
l)

7. Endif
8. Ascend, i.e., compute f ′′l = f ′l − L

−1
l Fl zl

9. Back-Substitute yl = U−1l f ′′l

ARMS_RBT preconditioner

ARMSRBT-solve(Al, bl) – Recursive Multi-Level Solution with RBT
1. Solve Ll f ′l = fl
2. Descend, i.e., compute h′l := hl − ElU−1l f ′l
3. If l = last_lev then
4. Solve Al+1zl = h′l using RBT + LU
5. Else
6. Call ARMSRBT-solve(Al+1, h

′
l)

7. Endif
8. Ascend, i.e., compute f ′′l = f ′l − L

−1
l Fl zl

9. Back-Substitute yl = U−1l f ′′l
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5.4 Integration of RBT into pARMS

Analyzing the whole framework

Our second part of internship consits of procedures as below. To begin with, we learn the struture
used in pARMS. It has three types of structure, for instance parms_arms_data, p4ptr, ilutptr,
and another special stucture to store the matrix called SparRow. Now, let me explain the roles of
these structure. The first structure parms_arms_data stores the interlevel structure p4ptr, the
last level ilutptr, parameters for solving the pARMS system, and information about the size of the
matrix, the number of matrix levels and the number of nonzeros in the original and preconditioned
matrices. The second structure p4ptr consists of information about interlevel matrices, each has
four parts : its decompotion as L, U, E, F matrices, the permutations as rperm, perms, sysperms,
the current rhs, and the pointers prev to previous level and next to the next level. The third
structure ilutptr contains information about the last level matrix, there is the last Schur complement
matrix C, its decomposition as L and U matrices, the permutations as rperm, perms, perm2, and
information about the current rhs. In the end, the special structure SparRow has the number of
lines, an array containing the length of each row, an array of pointers to store column indices and
an array of pointers to store nonzero entries.

Analyzing the code with global vision, which helps understanding the global structure of the
source code. We used Callgrind to analyze it, and we learned that pARMS managed the parallel
part by using global preconditioning with MPI instructions, while the local part, more precisely the
local preconditioning does not use the MPI instructions and is therefore standalone. Thus in our
work, we do not need to take care about parallelism, since pARMS does it by itself. The next step
was to analyze the code locally.

Then, we analyze the code in details, and we found that it was corresponding to the local
preconditioning, such as ilu0, ilut, iluk and arms. Then we focused on our target arms, because
it is the basis for arms_rbt. When we learned how did arms work, then we could integrate our
RBT into arms and make it behave like arms. In fact, by analyzing arms, we have created similar
functions which related to arms, in this way we keep coherence with the orginal code and take
profit from the original framework. The essential part resides in the last Schur complement, where
we implemented RBT so we could give the preconditioned matrix to the fgmres solver to solve the
linear system. The rest of the code behaves exactly as arms.

5.5 Experimental results

After having integrated RBT in the sequential ARMS solver, we continued our work by considering
the parallel solver pARMS. However, when we integrated RBT in pARMS, we did not accelerate
the solution time, but we decreased the number of iterations to reach convergence (see Figure 5.3),
at the same time we improved the accuracy of the solution (see Figure 5.4). The reason for not
accelerating the solution time is that in the last Schur complement, we convert the matrix from
sparse to dense format.

Despite we cannot reduce the solving time, even if we do not permute the lines and rows which
needs communications among processors, we can solve the system with less iterations and better
accuracy, which means that convergence is faster and that the obtained solution is more accurate.
This can be illustrated by Figure 5.3 and Figure 5.4. Considering the performance between arms
and arms_rbt, the latter with RBT performs much better than alone.

In this experiment, we used one of the matrix from Davis’ collection [11] to test the performance
of different preconditioners. The test matrix called SHERMAN5 is a real unsymmetric matrix, of
size 3312× 3312, and with 20793 non zeros. SHERMAN5 matrix arises from a three dimensional
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simulation model on a nx × ny × nz grid using a seven-point finite-difference approximation with
nc equations and unknowns per grid block, where nx is 16, ny is 23, nz is 3, nc is 3.

The important configurations are as follows : the tolerance for inner iteration is 0.01, the
tolerance for outer iteration is 1.0e-6, the number of levels for ARMS is 1, the block size for block
independent sets is 250, the tolerance used in independent set is 0.4, the krylov subspace size for
outer iteration is 20, the outer fgmres iteration is 200, the droptol of matrices L, U , L−1F and
EU−1 is 0.00001, the droptol of Schur complements at each level is 0.001, the droptol of ILUT in
last level Schur complement is 0.001 for ARMS, while 0 for ARMS_RBT.

The platform we have features 48GB of RAM and two Intel Xeon E5645 at 2.40GHz, each with
6 cores and hyperthreading disabled, which gives a total of 12 cores. During this experiment we
tested with various number of cores, 2, 4, 6, 8, 10, 12 respectively. In the following figures, we can
compare the performance of different preconditioners in terms of iterations required for convergence
and the accuracy. From these figures, we learn that solver ARMS with RBT performs better than
solver ARMS alone in most cases.

Figure 5.3 shows the comparison of performance in terms of iterations required for convergence.
We compare the results of each global preconditioners RAS, SCHUR and BJ respectively with
four local preconditioners iluk, ilut, arms, arms_rbt. We observe that most of the time, arms_rbt
performs better than all the other local preconditioners, and in the worst case, it performs as well
as arms.
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Figure 5.3: Iterations required for convergence
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Figure 5.4 shows the comparison of performance in terms of accuracy of results. We compare
the results of each global preconditioners RAS, SCHUR and BJ respectively with four local precon-
ditioners iluk, ilut, arms, arms_rbt. We observe that when we compare to other preconditioners,
arms_rbt performs better or similarly to arms when used with RAS and SCHUR global precondi-
tioners, when dealing with BJ, the results are particular since accuracy depends on the number of
processors used.
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Figure 5.4: Accuracy of results

After testing with matrix SHERMAN5, we also did some experiments by using other matrices
such as raefsky3 and SHERMAN3. With matrix raefsky3 we improved the performance by achieving
better accuracy, but arms and arms_rbt required the same number of iterations for convergence.
While with matrix SHERMAN3, we learned that integrating RBT into pARMS did not influence
the iterations required for convergence, nor the accuracy of results.
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Conclusion

The objective of this internship was to integrate randomization using RBT in the ARMS solver,
which requires advanced knowledge of both ARMS and RBT. This knowledge was acquired by
learning state-of-the-art methods for solving linear systems.

As a proof of concept, we obtained preliminary results using sequential ARMS. Our experiments
showed an acceleration of the convergence and better time results.

Our next task was to implement RBT into parallel ARMS. We expected to have a speed up in
the computations, while it was not always the case. Indeed, our integration of RBT in pARMS
requires a conversion of sparse matrices to a dense format. Depending on the sparsity of the last
Schur complement, we may obtain a bigger matrix which takes more time to process, anihilating
the benefit of using RBT.

However, we obtained an improvement in terms of number of iterations and accuracy of results.
This confirms the interest of using RBT to solve sparse linear systems using iterative methods.
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