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Abstract—We illustrate how the distributed parallel Algebraic
Recursive Multilevel Solver based on MPI can be adapted for
heterogeneous CPU/GPU architectures. The tasks performed on
the GPU are related to the preconditioning of each part of
the distributed matrix (local preconditioning) which is handled
in the distributed version by each MPI process. The solving
step remains on the CPU. In our implementation, the local
preconditioning can be based either on the randomization of the
last Schur complement system in the multilevel recursive process,
or on an Incomplete LU factorization from the MAGMA library.
Numerical experiments show that a promising performance
improvement can be obtained using either randomized multilevel
recursive preconditioning or Incomplete LU preconditioning for
large enough matrices. Each preconditioning method ensures a
good performance for a given set of matrices.

I. INTRODUCTION

In this work, we are concerned with the use of GPU
computing for preconditioned Krylov subspace methods and
more specifically for the pARMS solver package [1]. We focus
on the preconditioning phase of this solver, which represents
the main computational part and study whether it can take ad-
vantage of GPU capabilities by using efficient kernels based on
randomization or incomplete LU factorization. The main goal
is to accelerate the preconditioning step, and as a consequence
to improve the performance of the pARMS solver.

The Algebraic Recursive Multilevel Solver (ARMS) is one
of the solvers that applies iterative Krylov subspace methods
to solve sparse linear systems. It relies on multilevel partial
elimination. The preconditioning separates the entries into
two parts, the first part, called fine set, is composed of
block independent sets, and the second part, called coarse set,
contains the rest of the entries. The coarse set can be used
to build the Schur complement, which allows us to perform a
block LU factorization. The inter-level LU factorization can
be built from the upper level LU factorization and the fine set,
up to the first level.

Parallel ARMS (pARMS) is a distributed-memory imple-
mentation of ARMS, which relies on distributed independent
sets. It provides a set of standard preconditioners [2] such
as additive Schwartz, Schur complement and block Jacobi.
However, to our knowledge, there is no version of pARMS that
exploits the possibility of using accelerators such as GPUs.

In recent years, several packages which include GPU im-
plementations have been developed for iterative methods to

solve sparse linear systems. As examples, we can mention
the CUsparse library [3], which is a collection of routines
for sparse linear algebra computations on NVIDIA GPUs, or
ViennaCL [4], which is a free open-source linear algebra
library written in C++. For the GPU kernels integrated into
our implementation, we will use the MAGMA library [5],
[6], which is a public domain linear algebra library for
heterogeneous architectures. In addition to being well-known
for the dense linear algebra (e.g., factorizations and solvers for
linear systems, least squares and eigen problems), MAGMA
also provides a large variety of solvers, preconditioners, and
eigensolvers for sparse linear systems. Comprehensive support
for NVIDIA GPUs is provided, as well as some basic rou-
tines and functionalities in OpenCL and for Intel’s Xeon Phi
manycore accelerators (MIC). We will use MAGMA routines
for integrating preconditioning based either on ARMS and
Random Butterfly Transformations (RBT) or Incomplete LU
factorization into pARMS. We analyze the performance im-
provement obtained using each method on some test matrices.

The rest of the paper is organized as follows. In Section 2,
we describe the general features of the pARMS solver. Section
3 presents the new GPU functions that we have integrated into
the pARMS solver. In Section 4, we report some experimental
results on a set of test matrices to compare the CPU and the
CPU/GPU versions of the code. Section 5 gives concluding
remarks and future work.

II. PRECONDITIONED KRYLOV METHODS AND THE
PARMS SOLVER

A. Preconditioned Krylov Methods

A preconditioned Krylov subspace method is used to solve
the linear system Ax = b, where A is square non-symmetric
matrix, in general. If M is a preconditioning matrix, then the
right-preconditioned system may be expressed as:

AM−1y = b, where y =Mx , (1)

which is solved instead of the original system Ax = b. To
solve this system by using iterative methods, first, we compute
the residual r0 = b−Ax0 [7] after initializing x0, then we may
use a right-preconditioned Krylov subspace method to find an
approximate solution from the affine subspace [8]:

xm = x0 + span{r0, AM−1r0, . . . , (AM−1)m−1r0} , (2)



which satisfies certain conditions. For instance, the GMRES
algorithm [2] requires that the residual rm = b− Axm has a
minimal 2-norm. The flexible GMRES, abbreviated as FGM-
RES [2], differs from GMRES by allowing the preconditioning
to change at each iteration.

One way to obtain the preconditioning matrix M is to use
an incomplete LU factorization. This ILU factorization is
constructed by performing an approximate Gaussian Elimi-
nation (GE) [9] on a sparse matrix A and dropping certain
nonzero entries of the factorization according to different
dropping strategies. A dropping strategy that relies on levels
of the matrix fill-in results in a factorization called ILU(K).
For example, ILU(0) is obtained by performing the LU
factorization of A and dropping all fill-in elements generated
during the elimination process. Conversely, if the nonzeros are
dropped according to their numerical value magnitudes, then
the resulting factorization is called ILU with the threshold or,
if combined with the dropping strategy based on the number
of remaining nonzero, with dual threshold (ILUT ) and is
performed as follows. In the algorithm ILUT (k, τ), there are
two important rules. (1) If an element is less than relative
tolerance τi (τ × the norm of the ith row), it is dropped. (2)
Keep only the k largest elements in the L and U parts of the
row along with the diagonal element.

In this work, we use a preconditioner called Algebraic
Recursive Multilevel Solver (ARMS) [10], which is based on
a block incomplete LU factorization with different dropping
strategies. First, the matrix is permuted in order to obtain a
2× 2 block structure under the form(

B F

E C

)
×
(
u

y

)
=

(
f

g

)
, (3)

where the submatrix B comes from a group-independent set
reordering (see, e.g., [2]), thereby generating a block-diagonal
matrix B [11]. Then, it is convenient to eliminate the u block
of variables to obtain a system with only y variables. The
coefficient matrix for the resulting “reduced system” is the
Schur complement S = C − EB−1F [12]. A recursion can
now be exploited, such that dropping is applied to S to limit
the fill-in followed by the reordering of the resulting reduced
system into the form (3) using the group-independent set
discovery again. This process is repeated for several levels of
recursion until the Schur-complement system is small enough
or until a maximum number of recursion levels is reached.
Then, the last Schur complement may be solved by a direct
or an iterative solver. Note that the sparsification of the Schur
complement may be undertaken at each level of recursion, to
keep down the preconditioning costs.

B. Parallel Implementation of ARMS

Algorithm 1 oulines the steps to go through to solve the
linear system Ax = b, using the Schur Complement (SC)
preconditioning in the pARMS package. First, each processor
loads the input matrix and performs Distributed Site Expansion
(DSE) partitioning [13], which attributes to each process a set
of equations corresponding to the rows of the global linear

system, as well as the associated unknown variables. We
note that when the number of processors is not a power of
2, the load balance between the different MPI processes is
not ensured. As depicted in Figure 1, in the rows assigned
to each processor, two parts may be distinguished: a local
submatrix Ai that acts only on the local variables (ui) and
an external interface matrix Xi that acts only on the external
interface variables, which are communicated from neighboring
processors at each matrix-vector multiplication.

To construct the global SC preconditioning, first the local
LU factorization is performed on the local matrix held by each
processor (Step 4 in Algorithm 1) in order to precondition the
internal part of the local system and to obtain a factorization
of the local Schur complement matrices Si = Ci−EiB

−1
i Fi,

where Ai =
(
Bi Fi

Ei Ci

)
. More details about this step can be

found in [14]. Then the different parts of the distributed SC
are constructed and left to reside in each processor (Step 5). In
essence, the global SC system is never assembled or gathered
in one processor and is being solved using a preconditioned
GMRES method. Its distributed implementation, employed to
solve the global SC, may be viewed as an “inner” accelerator
with respect to the “outer” accelerator FGMRES used to solve
the original linear system with the input matrix A. The solution
of the global SC system yields a different preconditioning
at each iteration, and hence the need for the outer flexible
GMRES.

Algorithm 1 The linear system solution using a global Schur
Complement preconditioning in pARMS

1. Each processor loads the sparse matrix A.

2. Partition the input matrix A using DSE partitioner.

3. Each processor exchanges boundary variables with neigh-
boring processors.

4. Each processor performs local LU factorization on its
local submatrix Ai = Li × Ui (see Fig. 1).

5. Each processor constructs its portion Si of the global
Schur complement system from the result of the local LU
factorization and the external interface submatrix Xi.

6. Solve the global Schur complement system iteratively by
distributed GMRES as “inner” solver.

7. Each processor back-substitutes its interface variables to
recover the internal variables.

8. Each processor calculates its local residual.

9. If the global residual norm is not small enough, repeat
from Step 6.
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Figure 1: Sketch of the distributed linear system solution using
pARMS (example using four processors).

III. INTEGRATION OF GPU KERNELS INTO PARMS

In our hybrid CPU/GPU approach, we use GPU computing
in the preconditioning step of the pARMS solver. We mainly
focus on the two following functions. The first function is
related to the local preconditioner ARMS where we notice that
the last Schur complement system becomes denser compared
to the previous levels, and thus needs more time to be solved.
Similarly to [15], we propose the use of Random Butterfly
Transformation to avoid pivoting when solving the last Schur
complement system.

The second function is related to the local preconditioner
ILU(0) which represents, by profiling the pARMS solver
execution time, a significant part of the global time for a
large set of test matrices. For instance, we analyze the time
breakdown for solving the test problem flame2p3d80x4
(described in Section IV-A) using one MPI process, where
we use block Jacobi as a global preconditioner, ILU0 as
a local preconditioner, and FGMRES to solve the global
preconditioned system. We observe in Figure 2 that, for this
test matrix, the preconditioning application (see Steps 6 and 7
of Algorithm 1) represents about 27% of the total time needed
to solve the problem. We note that, for other test matrices,
the preconditioning represents between 20% and 50% of the
time for solution. This observation motivated our interest in
accelerating the preconditioning phase using GPU computing.

A. GPU Implementation of Random Butterfly Transformations
in ARMS preconditioning

In matrix factorizations, pivoting is a classical technique
to avoid division by zero or too-small entries. Random But-
terfly Transformation (RBT) can be used as an alternative to
pivoting [16] and is particularly efficient for heterogeneous
architectures [17] since it decreases the amount of data move-
ment comparing to pivoting. The RBT approach consists in
transforming the initial matrix into a matrix that would be
sufficiently random to avoid pivoting, then using a Gaussian
elimination with no pivoting to solve the randomized linear
system. In [15], we explained how the RBT technique can
be applied to the ARMS preconditioning where the original
ILUT factorization is replaced by the RBT preprocessing
in the solution of the last Schur complement. First, the last
Schur complement which is a sparse matrix is converted into
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in FGMRES (T6) Preconditioner 

application (T7-T8)

Matrix loading (T1)

Preconditioner
setup (T4-T5)

Mapping (T2)

Others
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Figure 2: Time breakdown for the pARMS solver (matrix
flame2p3d80x4) and corresponding task numbers in Al-
gorithm 1.

a dense matrix. Then, RBT is applied and the dense matrix
is randomized using two recursive butterfly matrices. Finally,
the randomized dense matrix is factorized using a LAPACK-
like [18] routine that performs Gaussian elimination with no
pivoting, followed by two triangular solves. Note that RBT
requires the size of the matrix to be a power of 2, which can
be obtained by augmenting the initial matrix with additional
ones on the diagonal. In the following, we describe how RBT
is applied to the last Schur complement S.

We first recall that a butterfly matrix is a random n × n
matrix of the form

B<n> =
1√
2

[
R0 R1

R0 −R1

]
,

where R0 and R1 are random diagonal n
2 ×

n
2 matrices. A

recursive butterfly matrix of size n and depth d is defined
recursively as follows

W<n,d> =


B

<n/2d−1>
1

. . .

B
<n/2d−1>

2d−1

 ·W<n,d−1>,

where W<n,1> = B<n>, the B
<n/2d−1>
i are butterflies of

size n/2d−1, and B<n> is a butterfly of size n.
To apply RBT to the matrix S, we generate two recursive

butterfly matrices W1 and W2 of size n×n. We set d to 2 since,
as explained in [16], two recursions are in general sufficient to
obtain satisfactory results. Instead of solving the initial system,
S x = b, using Gaussian elimination with partial pivoting, we
first solve the randomized system, W1

T S W2 z = W1
T b,

using Gaussian elimination with no pivoting, then the system
W2 z = x.

In Figure 3a, we describe the data movements (numbered
chronologically) between the CPU and the GPU in our imple-
mentation of the solution of the last Schur complement using



RBT (S denotes the last Schur complement, S′ is a dense
format of S, and S′r is the randomized matrix, rhs is the
right-hand side of the system).

We note that to get performance improvement using the
RBT GPU implementation, the last Schur complement should
be large enough, as it will be illustrated in the numerical
experiments section.

B. GPU implementation for ILU(0) preconditioning in
pARMS

In this implementation, we use MAGMA routines
to perform the ILU(0) factorization and the triangular
solves. The routine magma_dcumilusetup prepares
the ILU preconditioner via the CUsparse library
to factorize the local system of each processor.
Then the routines magma_dapplycumilu_l and
magma_dapplycumilu_r perform the left and right
triangular solves, respectively, by using the ILU(0)
preconditioner.

In Figure 3b, we describe the data movements between the
CPU and the GPU for the ILU(0) preconditioning in pARMS,
where A denotes the local matrix held by a processor. In
this figure, the data movements are numbered chronologically.
Note that the factorized LU system is sent back to the CPU
host to perform the separation between the L and U factors
(steps 2 and 3).

IV. NUMERICAL EXPERIMENTS

A. Experimental framework

The experiments were carried out in double precision arith-
metic on a system composed of one NVIDIA Kepler K40m
GPUs and a dual Intel Xeon E5-2620 system. The GPU
implementations are based on CUDA version 7.5 [19] and
MAGMA version 2.0 [20]. We use one MPI process per core
and no multi-threading. Thus, in our experiments, all the MPI
processes are sharing the same GPU.

The first test matrix edf comes from a computational fluid
dynamic (CFD) application [21] and is generated using a
regular hexahedral mesh. This matrix is symmetric and of
size 16, 384. The second test matrix flame2p3d80 arizes
from using a finite-difference scheme with local approximation
(called FLAME) [22] to screened electrostatic interactions
of spherical colloidal particles governed by the Poisson-
Boltzmann equation (PBE). Specifically, this matrix corre-
sponds to a two-particle simulation on an 803 grid and has
a regular sparsity structure but it is not symmetric and not
diagonally-dominant due to the characteristics of FLAME.
This simulation has been studied in [23], where it has been
shown that parallel preconditioning is imperative for its solu-
tion and that even modest levels of ILU fill-in already yield
a good convergence. The third test matrix epb3 is a matrix
from the University of Florida Sparse Matrix Collection [24].
It represents a large case of a plate-fin heat exchanger.

Here, we test these matrices on hybrid CPU/GPU archi-
tectures. As detailed in the previous section, we use GPU
computing to perform the local preconditioning. We point out
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Figure 3: CPU-GPU communication for arms_rbt and
magma_ilu0 in pARMS.

that for our experiments, we increase the size of the original
matrices edf, flame2p3d80, and epb3 in order to study
the scalability. In particular, to preserve the properties of the
original matrices, we increase the size by simply duplicating
the original matrix several times on the diagonal. For example,
to obtain the matrix flame2p3d80x4, which is four times
larger, we duplicate the original flame2p3d80 three times
along the diagonal. Table I contains the size and number of
nonzeros of the “scaled” test matrices.



Table I: The set of test matrices.

Matrix � Characteristics Dimension # non-zeros Structure
edfx128 2,097,152 14,155,776 symmetric

flame2p3d80x4 2,125,764 13,808,916 unsymmetric
epb3x64 5,415,488 29,672,000 unsymmetric

B. RBT combined with ARMS preconditioning

In this section, we compare the execution time of the
original pARMS solver (CPU) to that of the CPU/GPU version
which uses RBT to solve the last Schur complement system
in the recursive process, as described in Section III-A.

In Figure 4, we evaluate the weak scaling of the CPU and
CPU/GPU solvers. The tests are performed on the following
matrices: edfx16, edfx32, edfx64 and edfx128. Here
the number of non-zeros of the sparse matrix increases with
the number of cores, that is with the number of MPI processes
used. The performance of arms_rbt is better than arms, ex-
cept for 2 cores due to the small size of the problem that does
not enable us to take advantage of the GPU. Figure 4 shows
that using 12 MPI processes and one GPU, the execution time
decreases by 30%. We add that for this specific test, the size of
the last Schur complement held by each MPI process ranges
from 2828 to 3724.

2 / edf_16 4 / edf_32 6 / edf_64 12 / edf_128
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Figure 4: Execution time for arms and arms_rbt on differ-
ent edf matrices.

Figure 5 shows that arms_rbt performs better than arms
on the epb3x64 matrix using different number of MPI pro-
cesses varying from 6 to 12. In the best case, using arms_rbt
decreases the execution time by 25%. We note that we can not
use less than 6 MPI processes for this problem since the last
Schur complement is too large to fit into the GPU memory.

C. ILU(0) preconditioning

We compare the execution time for the two following
solvers:
• pARMS with ILU(0) local preconditioning on the CPU,

referred to as pARMS_ilu0.
• pARMS with ILU(0) local preconditioning on the GPU,

referred to as magma_ilu0.
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Figure 5: Execution time for arms and arms_rbt on the
epb3x64 matrix.

Figure 6 displays the execution time of the pARMS_ilu0
and the magma_ilu0 solvers for the edfx128 matrix. We
note that for this matrix, using more than 6 MPI processes
does not bring any advantage. Indeed the processes are sharing
the same GPU, which increases the communication amount to
perform between the CPU and the GPU with respect to the
problem size.
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Figure 6: The execution time for pARMS with ILU(0) on the
edfx128 matrix.

Figure 7 shows the execution time of the pARMS_ilu0 and
the magma_ilu0 solvers for the flame2p3d80x4 matrix.
The best improvement is obtained using one MPI process and
it is about 30%. In this figure, we observe that when we use 6
MPI processes, the execution time of the pARMS_ilu0 solver
increases with respect to the use of 4 MPI processes. This is
because of the DSE partitioning that does not ensure good
load balance between the processes when using a number of
processes which is not a power of 2.
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V. CONCLUSION

We have illustrated how a non intrusive approach can
be applied to integrate GPU computing into pARMS, more
specifically for the local preconditioning phase that represents
a significant part of the time to solve a given sparse linear
system. The CPU-only and the hybrid CPU/GPU solvers
have been compared on several test problems from physical
applications. The performance results of the hybrid CPU/GPU
solver using the ARMS preconditioning combined with RBT,
or the ILU(0) preconditioning, show a performance gain up
to 25% and 30%, respectively, on the test problems considered
in this paper. In a future work, extensive testing will be
performed on other matrices and other local preconditioners
(e.g., ILUT ), also by using several nodes of a cluster of GPUs.
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